
CS193p

Spring 2016

Stanford CS193p
Developing Applications for iOS

Spring 2016

CS193p

Spring 2016

Today
Memory Management for Reference Types

Controlling when things leave the heap

Closure Capture
Closures capture things into the heap too

Extensions
A simple, powerful, but easily overused code management syntax

Protocols
Last (but certainly not least important) typing mechanism in Swift

Delegation
An important use of protocols used throughout the iOS frameworks API

Scroll View
Scrolling around in and zooming in on big things on a small screen

CS193p

Spring 2016

Memory Management
Automatic Reference Counting

Reference types (classes) are stored in the heap.
How does the system know when to reclaim the memory for these from the heap?
It “counts references” to each of them and when there are zero references, they get tossed.
This is done automatically.
It is known as “Automatic Reference Counting” and it is NOT garbage collection.

Influencing ARC
You can influence ARC by how you declare a reference-type var with these keywords …
strong
weak
unowned

CS193p

Spring 2016

Memory Management
strong
strong is “normal” reference counting
As long as anyone, anywhere has a strong pointer to an instance, it will stay in the heap

weak
weak means “if no one else is interested in this, then neither am I, set me to nil in that case”
Because it has to be nil-able, weak only applies to Optional pointers to reference types
A weak pointer will NEVER keep an object in the heap
Great example: outlets (strongly held by the view hierarchy, so outlets can be weak)

unowned
unowned means “don’t reference count this; crash if I’m wrong”
This is very rarely used
Usually only to break memory cycles between objects (more on that in a moment)

CS193p

Spring 2016

Closures
Capturing

Closures are stored in the heap as well (i.e. they are reference types).
They can be put in Arrays, Dictionarys, etc. They are a first-class type in Swift.

What is more, they “capture” variables they use from the surrounding code into the heap too.
Those captured variables need to stay in the heap as long as the closure stays in the heap.
This can create a memory cycle …

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”, operation: { (x: Double) -> Double in
 display.textColor = UIColor.redColor()
 return sqrt(x)
})

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”, operation: { (x: Double) -> Double in
 display.textColor = UIColor.redColor()
 return sqrt(x)
})

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”) { (x: Double) -> Double in
 display.textColor = UIColor.redColor()
 return sqrt(x)
}

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”) { (x: Double) -> Double in
 display.textColor = UIColor.redColor()
 return sqrt(x)
}

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 display.textColor = UIColor.redColor()

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

But this will not compile.

CS193p

Spring 2016

Closures
Example

Imagine we added public API to allow a UnaryOperation to be added to the CalculatorBrain

This method would do nothing more than add a UnaryOperation to our Dictionary of enum

Now let’s imagine a View Controller was to add the operation “red square root”.
This operation will do square root, but it will also turn the display red.

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 display.textColor = UIColor.redColor() self.

Swift forces you to put self. here to remind you that self will get captured!
The Model and the Controller now point to each other through the closure.
And thus neither can ever leave the heap. This is called a memory cycle.

func addUnaryOperation(symbol: String, operation: (Double) -> Double)

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

self .display.textColor = UIColor.redColor()
[<special variable declarations>] in

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 .display.textColor = UIColor.redColor()me
me = self[] in

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.redColor()me

me = self[] in

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.redColor()

[self] in
self

= self

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

unowned
 .display.textColor = UIColor.redColor()

[self] in
self

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 .display.textColor = UIColor.redColor()
[selfweak] in

self

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 .display.textColor = UIColor.redColor()
[selfweak] in

self?

CS193p

Spring 2016

Closures
 So how do we break this cycle?

Swift lets you control this capture behavior …

addUnaryOperation(“!√”) {

 return sqrt($0)
}

 .display.textColor = UIColor.redColor()
[selfweak] in

?
weakSelf =

weakSelf

CS193p

Spring 2016

Demo
Red Square Root

Let’s do what we just talked about and see it in action in our Calculator

CS193p

Spring 2016

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}
… it can be used to clean up prepareForSegue code …

For example, this adds a method contentViewController to UIViewController …

var destination: UIViewController? = segue.destinationViewController
if let navcon = destination as? UINavigationController {
 destination = navcon.visibleViewController
}
if let myvc = destination as? MyVC { … }

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}

CS193p

Spring 2016

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}
… it can be used to clean up prepareForSegue code …

if let myvc = segue.destinationViewController.contentViewController as? MyVC { … }

For example, this adds a method contentViewController to UIViewController …

CS193p

Spring 2016

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

extension UIViewController {
 var contentViewController: UIViewController {
 if let navcon = self as? UINavigationController {
 return navcon.visibleViewController
 } else {
 return self
 }
 }
}

For example, this adds a method contentViewController to UIViewController …

Notice that when it refers to self, it means the thing it is extending (UIViewController).

CS193p

Spring 2016

Extensions
Extending existing data structures

You can add methods/properties to a class/struct/enum (even if you don’t have the source).

There are some restrictions
You can’t re-implement methods or properties that are already there (only add new ones).
The properties you add can have no storage associated with them (computed only).

This feature is easily abused
It should be used to add clarity to readability not obfuscation!
Don’t use it as a substitute for good object-oriented design technique.
Best used (at least for beginners) for very small, well-contained helper functions.
Can actually be used well to organize code but requires architectural commitment.
When in doubt (for now), don’t do it.

CS193p

Spring 2016

Protocols
Protocols are a way to express an API more concisely

Instead of forcing the caller of an API to pass a specific class, struct, or enum,
an API can let callers pass any class/struct/enum that the caller wants
but can require that they implement certain methods and/or properties that the API wants.

To specify which methods and properties the API wants, the API is expressed using a Protocol.
A Protocol is simply a collection of method and property declarations.

A Protocol is a TYPE
It can be used almost anywhere any other type is used: vars, function parameters, etc.

The implementation of a Protocol’s methods and properties
The implementation is provided by an implementing type (any class, struct or enum).
Because of this, a protocol can have no storage associated with it

(any storage required to implement the protocol is provided by an implementing type).
It is possible to add implementation to a protocol via an extension to that protocol

(but remember that extensions also cannot use any storage)

CS193p

Spring 2016

Protocols
There are four aspects to a protocol

1. the protocol declaration (what properties and methods are in the protocol)
2. the declaration where a class, struct or enum claims that it implements a protocol
3. the code that implements the protocol in said class, struct or enum
4. optionally, an extension to the protocol which provides some default implementation

Optional methods in a protocol
Normally any protocol implementor must implement all the methods/properties in the protocol.
However, it is possible to mark some methods in a protocol optional

(don’t get confused with the type Optional, this is a different thing).
Any protocol that has optional methods must be marked @objc.
And any optional-protocol implementing class must inherit from NSObject.
Used often in iOS for delegation (more later on this).
Except for delegation, a protocol with optional methods is rarely (if ever) used.
As you can tell from the @objc designation, it’s mostly for backwards compatibility.

CS193p

Spring 2016

Declaration of the protocol itself

Protocols
protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating
(unless you are going to restrict your protocol to class implementers only with class keyword)

protocol SomeProtocol : class, InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

Declaration of the protocol itself

Protocols

Anyone that implements SomeProtocol must also implement InheritedProtocol1 and 2
You must specify whether a property is get only or both get and set
Any functions that are expected to mutate the receiver should be marked mutating
(unless you are going to restrict your protocol to class implementers only with class keyword)
You can even specify that implementers must implement a given initializer

protocol SomeProtocol : InheritedProtocol1, InheritedProtocol2 {
 var someProperty: Int { get set }
 func aMethod(arg1: Double, anotherArgument: String) -> SomeType
 mutating func changeIt()

 init(arg: Type)
}

CS193p

Spring 2016

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class

CS193p

Spring 2016

enum SomeEnum : SomeProtocol, AnotherProtocol {

 // implementation of SomeEnum here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p

Spring 2016

struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part

CS193p

Spring 2016

struct SomeStruct : SomeProtocol, AnotherProtocol {

 // implementation of SomeStruct here

 // which must include all the properties and methods in SomeProtocol & AnotherProtocol
}

How an implementer says “I implement that protocol”

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum

CS193p

Spring 2016

How an implementer says “I implement that protocol”
class SomeClass : SuperclassOfSomeClass, SomeProtocol, AnotherProtocol {

 // implementation of SomeClass here, including …

 required init(…)
}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)

CS193p

Spring 2016

How an implementer says “I implement that protocol”
extension Something : SomeProtocol {

 // implementation of SomeProtocol here

 // no stored properties though

}

Protocols

Claims of conformance to protocols are listed after the superclass for a class
Obviously, enums and structs would not have the superclass part
Any number of protocols can be implemented by a given class, struct or enum
In a class, inits must be marked required (or otherwise a subclass might not conform)
You are allowed to add protocol conformance via an extension

CS193p

Spring 2016

Using protocols like the type that they are!

Protocols
protocol Moveable {

mutating func moveTo(p: CGPoint)
}
class Car : Moveable {

func moveTo(p: CGPoint) { … }
func changeOil()

}
struct Shape : Moveable {

mutating func moveTo(p: CGPoint) { … }

func draw()
}

let prius: Car = Car()
let square: Shape = Shape()

CS193p

Spring 2016

Using protocols like the type that they are!

Protocols
protocol Moveable {
 mutating func moveTo(p: CGPoint)
}
class Car : Moveable {
 func moveTo(p: CGPoint) { … }
 func changeOil()
}
struct Shape : Moveable {
 mutating func moveTo(p: CGPoint) { … }
 func draw()
}

let prius: Car = Car()
let square: Shape = Shape()

CS193p

Spring 2016

Using protocols like the type that they are!

Protocols
var thingToMove: Moveable = prius
thingToMove.moveTo(…)
thingToMove.changeOil()
thingToMove = square
let thingsToMove: [Moveable] = [prius, square]

func slide(slider: Moveable) {
 let positionToSlideTo = …
 slider.moveTo(positionToSlideTo)
}
slide(prius)
slide(square)
func slipAndSlide(x: protocol<Slippery,Moveable>)
slipAndSlide(prius)

protocol Moveable {
 mutating func moveTo(p: CGPoint)
}
class Car : Moveable {
 func moveTo(p: CGPoint) { … }
 func changeOil()
}
struct Shape : Moveable {
 mutating func moveTo(p: CGPoint) { … }
 func draw()
}

let prius: Car = Car()
let square: Shape = Shape()

CS193p

Spring 2016

Controller

View
delegate

data source

should

will did

countdata
at

Delegation
A very important use of protocols

It’s a way to implement “blind communication” between a View and its Controller

CS193p

Spring 2016

Delegation
A very important use of protocols

It’s a way to implement “blind communication” between a View and its Controller

How it plays out …
1. A View declares a delegation protocol (i.e. what the View wants the Controller to do for it)
2. The View’s API has a weak delegate property whose type is that delegation protocol
3. The View uses the delegate property to get/do things it can’t own or control on its own
4. The Controller declares that it implements the protocol
5. The Controller sets self as the delegate of the View by setting the property in #2 above
6. The Controller implements the protocol (probably it has lots of optional methods in it)

Now the View is hooked up to the Controller
But the View still has no idea what the Controller is, so the View remains generic/reusable

This mechanism is found throughout iOS
However, it was designed pre-closures in Swift. Closures are often a better option.

CS193p

Spring 2016

Delegation
Example
UIScrollView (which we’ll talk about in a moment) has a delegate property …
weak var delegate: UIScrollViewDelegate?

The UIScrollViewDelegate protocol looks like this …
@objc protocol UIScrollViewDelegate {

optional func scrollViewDidScroll(scrollView: UIScrollView)
optional func viewForZoomingInScrollView(scrollView: UIScrollView) -> UIView

… and many more …
}

A Controller with a UIScrollView in its View would be declared like this …
class MyViewController : UIViewController, UIScrollViewDelegate { … }
… and in its viewDidLoad() or in the scroll view outlet setter, it would do …
scrollView.delegate = self
… and it then would implement any of the protocol’s methods it is interested in.

CS193p

Spring 2016

UIScrollView

CS193p

Spring 2016

Adding subviews to a normal UIView ...
view.addSubview(logo)
logo.frame = CGRect(x: 300, y: 50, width: 120, height: 180)

CS193p

Spring 2016

CS193p

Spring 2016

Adding subviews to a UIScrollView ...

scrollView.addSubview(logo)

scrollView.contentSize = CGSize(width: 3000, height: 2000)
logo.frame = CGRect(x: 2700, y: 50, width: 120, height: 180)

CS193p

Spring 2016

CS193p

Spring 2016

Adding subviews to a UIScrollView ...
aerial.frame = CGRect(x: 150, y: 200, width: 2500, height: 1600)
scrollView.contentSize = CGSize(width: 3000, height: 2000)

scrollView.addSubview(aerial)

CS193p

Spring 2016

CS193p

Spring 2016

Adding subviews to a UIScrollView ...
aerial.frame = CGRect(x: 150, y: 200, width: 2500, height: 1600)
scrollView.contentSize = CGSize(width: 3000, height: 2000)

scrollView.addSubview(aerial)

CS193p

Spring 2016

CS193p

Spring 2016

Scrolling in a UIScrollView ...

CS193p

Spring 2016

CS193p

Spring 2016

Scrolling in a UIScrollView ...

CS193p

Spring 2016

CS193p

Spring 2016

Scrolling in a UIScrollView ...

CS193p

Spring 2016

CS193p

Spring 2016

Scrolling in a UIScrollView ...

CS193p

Spring 2016

CS193p

Spring 2016

Positioning subviews in a UIScrollView ...

CS193p

Spring 2016

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)

CS193p

Spring 2016

Positioning subviews in a UIScrollView ...

CS193p

Spring 2016

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)
logo.frame = CGRect(x: 2300, y: 50, width: 120, height: 180)

CS193p

Spring 2016

Positioning subviews in a UIScrollView ...

CS193p

Spring 2016

aerial.frame = CGRect(x: 0, y: 0, width: 2500, height: 1600)
logo.frame = CGRect(x: 2300, y: 50, width: 120, height: 180)
scrollView.contentSize = CGSize(width: 2500, height: 1600)

CS193p

Spring 2016

That’s it!

CS193p

Spring 2016

CS193p

Spring 2016

That’s it!

CS193p

Spring 2016

CS193p

Spring 2016

That’s it!

CS193p

Spring 2016

CS193p

Spring 2016

That’s it!

CS193p

Spring 2016

CS193p

Spring 2016

That’s it!

CS193p

Spring 2016

CS193p

Spring 2016

Where in the content is the scroll view currently positioned?

contentOffset.x

contentOffset.y

let upperLeftOfVisible: CGPoint = scrollView.contentOffset
In the content area’s coordinate system.

CS193p

Spring 2016

What area in a subview is currently visible?
let visibleRect: CGRect = aerial.convertRect(scrollView.bounds, fromView: scrollView)

Why the convertRect? Because the scrollView’s bounds are in the scrollView’s coordinate system.
And there might be zooming going on inside the scrollView too …

CS193p

Spring 2016

UIScrollView
How do you create one?

Just like any other UIView. Drag out in a storyboard or use UIScrollView(frame:).
Or select a UIView in your storyboard and choose “Embed In -> Scroll View” from Editor menu.

To add your “too big” UIView in code using addSubview …
let image = UIImage(named: “bigimage.jpg”)
let iv = UIImageView(image: image) // iv.frame.size will = image.size
scrollView.addSubview(iv)
Add more subviews if you want.
All of the subviews’ frames will be in the UIScrollView’s content area’s coordinate system
(that is, (0,0) in the upper left & width and height of contentSize.width & .height).

Now don’t forget to set the contentSize
Common bug is to do the above 3 lines of code (or embed in Xcode) and forget to say:

scrollView.contentSize = imageView.bounds.size (for example)

CS193p

Spring 2016

UIScrollView
Scrolling programmatically
func scrollRectToVisible(CGRect, animated: Bool)

Other things you can control in a scroll view
Whether scrolling is enabled.
Locking scroll direction to user’s first “move”.
The style of the scroll indicators (call flashScrollIndicators when your scroll view appears).
Whether the actual content is “inset” from the content area (contentInset property).

CS193p

Spring 2016

UIScrollView
Zooming

All UIView’s have a property (transform) which is an affine transform (translate, scale, rotate).
Scroll view simply modifies this transform when you zoom.
Zooming is also going to affect the scroll view’s contentSize and contentOffset.

Will not work without minimum/maximum zoom scale being set
scrollView.minimumZoomScale = 0.5 // 0.5 means half its normal size
scrollView.maximumZoomScale = 2.0 // 2.0 means twice its normal size

Will not work without delegate method to specify view to zoom
func viewForZoomingInScrollView(sender: UIScrollView) -> UIView
If your scroll view only has one subview, you return it here. More than one? Up to you.

Zooming programatically
var zoomScale: CGFloat
func setZoomScale(CGFloat, animated: Bool)
func zoomToRect(CGRect, animated: Bool)

CS193p

Spring 2016

CS193p

Spring 2016

scrollView.zoomScale = 1.2

CS193p

Spring 2016

CS193p

Spring 2016

scrollView.zoomScale = 1.0

CS193p

Spring 2016

scrollView.zoomScale = 1.2
CS193p

Spring 2016

CS193p

Spring 2016

CS193p

Spring 2016

zoomToRect(CGRect, animated: Bool)

CS193p

Spring 2016

CS193p

Spring 2016

zoomToRect(CGRect, animated: Bool)

CS193p

Spring 2016

zoomToRect(CGRect, animated: Bool)

CS193p

Spring 2016

zoomToRect(CGRect, animated: Bool)

CS193p

Spring 2016

UIScrollView
Lots and lots of delegate methods!

The scroll view will keep you up to date with what’s going on.

Example: delegate method will notify you when zooming ends
func scrollViewDidEndZooming(UIScrollView,

withView: UIView, // from delegate method above
atScale: CGFloat)

If you redraw your view at the new scale, be sure to reset the transform back to identity.

